2016/ODD/07/20/BSMP-303/457

UG Odd Semester (CBCS) Exam., December-2016

B.Sc (Honours) B.Ed

MATHEMATICS

(Pass)

(3rd Semester)

Course No. : BSMP-303

(Classical Algebra, Trigonometry and Modern Algebra and Linear Algebra)

Full Marks : 70 Pass Marks : 28

Time : 3 hours

The figures in the margin indicate full marks for the questions

- **1.** (a) Let $A = M_n$ be Hermitian. Then prove that x Ax is real for all $x = C^n$.
 - (b) Let B be an arbitrary nonsingular real square matrix. Then prove that

$$(\det B)^2$$
 $\begin{bmatrix} n & n \\ & & \\ & & \\ i & 1 & j & 1 \end{bmatrix} |B_{ij}|^2$

(2)

OR

2.	(a)	Define conjugate transpose of a complex matrix.	5
	(b)	Find the conjugate transpose of the following complex matrix :	5
		$\begin{array}{ccccc} A & 3 & 7i & 0 \\ & 2i & 4 & i \end{array}$	
	(c)	Define Hermitian matrix.	4
3.	(a)	If $y e^{ax} \sin bx$, then prove that	
		$y_2 \ 2ay_1 \ (a^2 \ b^2)y \ 0$	5
	(b)	Find the <i>n</i> th derivatives of	

$$\frac{1}{1 \quad 5x \quad 6x^2} \qquad \qquad 9$$

OR

4. (a) Prove that the sequence whose general term is
$$a_n = \begin{bmatrix} n & 1 \\ k & 0 \end{bmatrix}$$
 converges.

(b) Find the lim
$$a_n$$
, where a_n is defined as $a_1 \quad 2 \text{ and } a_n \quad \frac{1}{2} (a_n \quad 6).$

J7**/627**

(Turn Over)

7

7

J7**/627**

(Continued)

(3)

5.	(a)	What do you understand by De Moivre's
		theorem?

(b) Find all complex cube roots of 27i. 9

OR

- **6.** (a) Define hyperbolic sine function and prove that $\cosh x \sinh x e^x$. 6
 - (b) Integrate each of the following with respect to x: $2 \times 4=8$ (i) $\cos 3h$ (ii) $\sinh^2 x$ (iii) $x \sinh x$ (iv) $e^x \cosh x$
- **7.** (a) Explain the important properties of cyclic group.
 - (b) Let G be a group, a G such that |a| nand d a positive divisor of n. Then prove that $|a^d| \frac{n}{d}$.

OR

8. (a) Let f:(a, b) R. Suppose that $\underline{D}f(x)$ and $\overline{D}f(x)$ for every x (a, b). Then prove that the function f is continuous on the interval (a, b). 7

(4)

- (b) Let $f:(a, b) ext{ R}$ be convex. Then prove that for x_1, x_2 (a, b) such that $x_1 ext{ x}_2$, it follows that $\overline{D}f(x_1) ext{ D}f(x_2)$. 7
- **9.** (a) Describe the properties of ring. 6
 - (b) Let D be a skew field with centre F. If D has an ordering p of higher level, then prove that F is algebraically closed in D.

OR

- **10.** (a) Define vector space. 7
 - (b) Let V be vector space and U V. If U is closed under vector addition and scalar multiplication, then show that U is a subspace of V.

 $\star \star \star$

5

7

7

J7—50**/627**

7