2016/ODD/13/34/BPH-111 (C)/550

(2)

UG Odd Semester (CBCS) Exam., December-2016

PHARMACEUTICAL SCIENCE

(1st Semester)

Course No.: BPH-111 (C)

(Mathematics—I)

(Remedial)

Full Marks: 75
Pass Marks: 30

Time: 3 hours

The figures in the margin indicate full marks for the questions

Answer five questions, selecting one from each Unit

Unit—I

1. (a) Solve the following equations by using Cramer's rule:

(b) Define the following:

3+3+3=9

- (i) Transpose of a matrix
- (ii) Symmetric matrix
- (iii) Skew symmetric matrix

2. (a) If

1 2 3 A 3 1 2 1 1 4

then find

(i) $A A^T$

(ii) $A A^T$

4

(b) If

and *C* 2 1 3 1 4 2

then find

(i) 2A 3B C

(ii) 5A 4B AB

3+3=6

J7**/684**

(Turn Over)

6

J7**/684**

(Continued)

(c) If $x \ y \ z \ 0$, then show that

$$\begin{vmatrix} 1 & 1 & 1 \\ x & y & z \\ x^2 & y^2 & z^2 \end{vmatrix} = 0$$

UNIT—II

- **3.** (a) If $\tan A = \frac{1}{2}$ and $\tan B = \frac{1}{3}$, then find the value of $\tan(A = B)$.
 - (b) Prove that $\tan 15 + 2 \sqrt{3}$.
 - (c) If $\sin \sin a$ and $\cos \cos b$, then show that

$$\cos(\quad) \quad \frac{b^2 \quad a^2}{b^2 \quad a^2} \qquad \qquad 5$$

- **4.** (a) If A B C 180, then prove that $\tan A \tan B \tan C \tan A \tan B \tan C$ 6
 - (b) If $\tan A + \tan B = p \text{ and } \cot A + \cot B = q$ then show that

$$\cot(A \quad B) \quad \frac{1}{p} \quad \frac{1}{q} \tag{6}$$

(c) If $\tan A = \frac{x}{x-1} \text{ and } \tan B = \frac{1}{2x-1}$ then show that A = B = -4. 3

(Turn Over)

UNIT—III

5. (a) Using distance formula, show that the points (5, -3), (9, 5) and (11, 9) are collinear.

(b) Find the area of the triangle formed by the vertices (-2, -3), (-1, 0) and (7, -6).

4

6

5

6

(c) If the equation

$$ax^2$$
 $3xy$ $2y^2$ $5x$ $5y$ c 0

represents two straight lines perpendicular to each other, find a and c.

- 5. (a) Find the combined equation of the lines whose separate equations are 2x + 4y + 2 = 0 and 3x + y + 3 = 0.
 - (b) Show that the equation

$$3x^2$$
 $7xy$ $2y^2$ $5x$ $5y$ 2 0

represents a pair of straight lines. Also find the separate equation of the lines.

(c) Find the value of p if the lines represented by px^2 5xy $7y^2$ 0 are perpendicular to each other.

J7**/684** (Continued)

UNIT—IV

- 7. (a) Find $\frac{dy}{dx}$, for the following: 2+2+2=6
 - (i) $ax^2 2hxy by^2 0$
 - (ii) $\frac{x}{a} = \frac{y}{b} = 1$
 - (iii) $x^m y^n a^{m-n}$
 - (b) If $x = a\cos t$, $y = b\sin t$, where t = is a variable parameter, then find $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$.
 - (c) Find $\frac{dy}{dx}$ for the following: $2\frac{1}{2}+2\frac{1}{2}=5$
 - (i) $y e^{(ax^2 bx c)}$
 - (ii) $y \log \frac{1 \sin x}{1 \sin x}$
- **8.** (a) Evaluate: 3

$$\underset{x \to 0}{\text{Lt}} \quad \frac{1 \quad \cos 2x}{x^2}$$

(b) If $y = e^{(ax^2 - bx - c)}$, then find $\frac{d^2y}{dx^2}$.

- (c) Find $\frac{dy}{dx}$, if $x = a(t + \sin t)$ and $y = a(1 + \cos t)$.
- (d) If xy ae^x be^x , prove that

$$x\frac{d^2y}{dx^2} \quad 2\frac{dy}{dx} \quad xy$$

3

Unit-V

9. (a) Evaluate the following integrals: 3+3=6

(i)
$$\frac{dx}{3x^2 + 2x + 5}$$

- (ii) $x^2e^x dx$
- b) Evaluate: 3 $\frac{4}{1} \frac{dx}{\sqrt{5 + x}}$

$$xy^2 \frac{dy}{dx} = 1 \quad y^3$$

(d) Find the differential equation by eliminating a and b from $xy ae^x be^x$.

(7)

$$\frac{(4x \quad 3)}{2x^2 \quad x \quad 1} \, dx$$

$$\frac{dx}{9 + x^2}$$
 and $\int_0^{4} \sec^2 x \, dx$

$$(1 \quad x^2)\frac{dy}{dx} \quad 2x(1 \quad y^2)$$

$$\frac{d^2y}{dx^2} \quad 6\frac{dy}{dx} \quad 8y \quad 0$$
