2016/ODD/12/32/IT-305/634

B.Tech Odd Semester (CBCS) Exam., December—2016

INFORMATION TECHNOLOGY

(3rd Semester)

Course No. : IT-305

(Digital Electronics)

Full Marks : 75 Pass Marks : 30

Time : 3 hours

- Note: 1. Attempt one question from each Unit.
 - 2. Begin each answer in a new page.
 - 3. Answer parts of a question at a place.
 - 4. Assume reasonable data wherever required.
 - 5. The figures in the right margin indicate full marks for the question.

Unit—1

 (a) What are the three stages for designing of digital systems? Explain each of them. 1+2+2+2=7

J7/1040

(Turn Over)

(b)	Convert the following binary numbers to grav code numbers : $2^{\times 2}$	1=8
	(i) 00111	
	(1) 00111	
	(<i>ii</i>) 1111	
	<i>(iii)</i> 1101	
	<i>(iv)</i> 1001	
(a)	Encode data bits 0011 into the 7-bit even parity Hamming code.	5
(\mathbf{b})	Write all the methods of obtaining the	
(D)	2's complement of a number.	5
(c)	Subtract the following in BCD and XS-3	
(-)	codes :	5
		0
	(i) 920–265	
	<i>(ii)</i> 635·7–419·8	

(2)

Unit—2

3. (a) Simplify the following Boolean functions and draw the logic diagram : 5+5=10
(i) F (A, B, C, D) (1, 2, 4, 6, 7)
(ii) F (A, B, C, D) (4, 5, 6, 7, 8, 12) d(1, 2, 3, 9, 11, 14)

(b) Express the Boolean function F xy x z in a product of maxterm form using the distributive law. 5

J7/1040

2.

(Continued)

4. (a) Simplify the following Boolean expression to a minimum number of literals :

xyz x y xyz

- (b) Expand A B to minterms and maxterms. 5
- (c) Reduce the expression

 $(a \ b) (a \ \overline{b}) (\overline{a} \ \overline{b})$

in POS form using K-map. 5

Unit—3

- 5. (a) Design a combinational circuit to produce an output of 1, when its input is a 2421 code representing an even decimal number less than 10, otherwise 0.
 - (b) Show two 3-to-8 line decoders with enabled and inputs connected to form a 4-to-16 line decoder.
 - (c) Implement a full-adder with two half-adders and an OR gate.
- 6. (a) Design a 3-to-8 line decoder using two 2-to-4 line decoders.5
 - (b) Construct a 32×1 MUX using 8×1 MUX and 4×1 MUX.
 - (c) Design a Borrow look-ahead subtractor. 5

5

5

5

5

5

(4)

Unit—4

- **7.** (a) Design a 4-bit synchronous binary counter using D flip-flop. 8
 - (b) Convert SR flip-flop to D flip-flop and design the logic diagram.5
 - (c) What do you mean by Race-Around condition? 2
- **8.** (*a*) A sequential circuit has two JK flip-flops *A* and *B* and one *x*. The circuit is described by the following flip-flop input equations :
 - $\begin{array}{cccc} J_A & x & & K_A & B \\ J_B & x & & K_B & A \end{array}$
 - (i) Derive the state equation $A_{(t \ 1)}$ and $B_{(t \ 1)}$ by substituting the input equations for *J* and *K* variables.
 - *(ii)* Draw the state diagram of the circuit.
 - (b) Explain, in detail, the working of Johnson counter. What are the differences between Ring counter and Johnson counter?
 4+3=7
- J7**/1040**

(Continued)

8

UNIT—5

9.	(a)	Design a combinational circuit using a ROM. The circuit accepts a 3-bit number and outputs a binary number equal to the square of the input number.	8
	(b)	What are the different types of series comes in TTL gates?	3
	(c)	Describe the basic circuit of open-collector TTL NAND gates.	4
10.	(a)	Design a 32×8 ROM.	8
	(b)	What are the basic types of MOS structure?	3

(c) Discuss the symbols for MOS transistor. 4

* * *