2016/ODD/12/32/IT-303/632

B.Tech Odd Semester (CBCS) Exam., December-2016

INFORMATION TECHNOLOGY

(3rd Semester)

Course No. : IT303

(Numerical Methods and Programming)

Full Marks : 75 Pass Marks : 30

Time: 3 hours

The figures in the margin indicate full marks for the questions

Answer five questions, taking one from each Unit

Unit—I

- **1.** (a) Compute the relative error in computing $y \quad x^3 \quad 3x^2 \quad x \quad \text{for} \quad x \quad \sqrt{2}$, taking $\sqrt{2} \quad 1 \quad 414$.
 - (b) Briefly describe the concept applied in the bracketing methods used for solving nonlinear equations.
 - (c) Find a real root of the equation xe^x 2 0 correct up to 3 significant figures by Regula Falsi method. 7

4

(2)

- **2.** (a) State and prove Newton-Raphson formula for finding the real root of an equation f(x) = 0. $7\frac{1}{2}$
 - (b) Find a root of the equation $xe^x \cos x$ using secant method correct to four decimal places. $7\frac{1}{2}$

Unit—II

- **3.** (a) Derive the equation for Newton's general interpolation formula with divided differences. $7\frac{1}{2}$
 - (b) Construct the interpolating polynomial for the function $y ext{ sin } x$, choosing the points

 $x_0 \quad 0, \ x_1 \quad 1/6, \ x_2 \quad 1/2 \qquad 7\frac{1}{2}$

- **4.** (a) Derive Lagrange's polynomial
interpolation formula for a function f(x)
corresponding to the distinct points
 x_0, x_1, \dots, x_n .7
 - (b) Find from the following table, the value of y when x 1 54 using Newton's backward interpolation formula :

x	1.0	$1 \cdot 1$	1.2	1.3	1.4	1.5
y	0.24197	0.21785	0.19414	0.17137	0.14973	0.12952

J7**/1038**

(Continued)

8

UNIT—III

- **5.** (a) Describe LU-factorization method for numerical solution of a system of linear equations.
 - Solve the following system by Gauss (b)elimination method :

 $2x \ 3y \ 2z \ 2$ $10x \ 3y \ 4z \ 16$ 3x 6y 2z 6

- **6.** (a) Describe Gauss-Jacobi method for numerical solution of a system of linear equations.
 - Solve the following system of equations, (b)correct to four places of decimals, by Gauss-Seidel method :
 - $x \ y \ 54z \ 110$ $27x \ 6y \ z \ 85$ $6x \ 15y \ 2z \ 72$

UNIT-IV

- Describe Runge-Kutta **7.** (a) method for solution of numerical ordinary differential equation.
 - Solve by Euler's modified method (b)

$$\frac{dy}{dx} \log (x \ y), \ y(0) \ 2$$

x 1 2 with h 0 2.

(4)

- 8. (a) State the formula of Euler's method. Illustrate its concept graphically. 7
 - (b) Compute $y(0 \ 1)$ by Runge-Kutta method of 4th order for the differential equation

$$\frac{dy}{dx}$$
 x y, y(0) 1, h 0 05 8

UNIT-V

- 9. From Newton-Cotes quadrature formula, deduce the following quadrature rules : 5×3=15
 - Trapezoidal rule (a)
 - Simpson's 1/3rd rule (b)
 - Weddle's rule (c)
- Calculate the approximate value of **10.** (a) $\int_{0}^{2} \sin x \, dx$ by trapezoidal rule using 11 ordinates. Also compare it with the actual value of the integral.
 - (b) Evaluate

$${}^{6}_{0}\frac{dx}{1 \ x^{2}}$$

.

by using Simpson's 3/8 rule.

7

8

 $\star \star \star$

at

(Turn Over)

8

7

7

8

8

7

J7—100/1038