2016/ODD/12/32/CSE-304/675

B.Tech Odd Semester (CBCS) Exam., December—2016

(Computer Science and Engineering)

NUMERICAL METHODS

(3rd Semester)

Course No. : CSECC-04

Full Marks : 50 Pass Marks : 15

Time : 2 hours

The figures in the margin indicate full marks for the questions

Answer any five questions

1. (a) Solve the following system of equations by Gauss elimination method :

(b) Construct the interpolating polynomial for the function $y \sin x$, choosing the points $x_0 \quad 0, x_1 \quad \frac{1}{6}$ and $x_2 \quad \frac{1}{2}$. 5

(2)

- **2.** (a) Compute the relative error in computing $y = x^3 = 3x^2 = x$ for $x = \sqrt{2}$, taking $\sqrt{2} = 1$ 414. 4
 - (b) Find, from the following table, the value of y when x 1 54 using Newton's backward interpolation formula : 6

х	1.0	1.1	1.2	1.3	1.4	1.5
y	0.24197	0.21785	0.19414	0.17137	0.14973	0.12952

3. (a) Compute $y(0 \ 1)$ by Runge-Kutta method of 4th order for the differential equation

$$\frac{dy}{dx}$$
 x y, y(0) 1, h 0 05

(b) Evaluate $\int_{0}^{6} \frac{dx}{1 x^{2}}$ by using Simpson's $\frac{3}{8}$ th rule. 5

4. (a) State and prove Newton-Raphson formula for finding the real root of an equation f(x) = 0. 5

(b) Calculate the approximate value of $\frac{1}{2}\sin x \, dx$ by trapezoidal rule using 11 ordinates.

5

J7**/1074**

(Continued)

5

5

5. (a) Solve the following by Euler's modified method :

at x

$$\frac{dy}{dx} \log(x \ y), \ y(0) \ 2$$
1 2 with h 0 2.

- (b) Derive Lagrange's polynomial interpolation formula for a function f(x)corresponding to the distinct points x_0, x_1, \dots, x_n . 5
- 6. (a) By constructing a difference table, find the sixth term of the series, 8, 12, 19, 29, 42,
 - (b) Solve the following system of equations, correct to four places of decimals, by Gauss-Seidel method : 5 $x \ y \ 54z \ 110$
 - $27x \ 6y \ z \ 85$ $6x \ 15y \ 2z \ 72$
- Describe Runge-Kutta method for numerical solution of ordinary differential equation. 10

- 8. From Newton-Cotes quadrature formula, deduce the following quadrature rules : 3+3+4=10
 - (a) Trapezoidal rule
 - (b) Simpson's $\frac{1}{3}$ rd rule
 - (c) Weddle's rule
 - $\star \star \star$

5

5