## 2016/ODD/12/32/IT-702/626

B.Tech Odd Semester (CBCS) Exam., December—2016

## INFORMATION TECHNOLOGY

(7th Semester)

Course No. : IT-702

#### (Information and Coding Theory)

Full Marks : 75 Pass Marks : 30

Time : 3 hours

- *Note* : 1. The figures in the margin indicate full marks for the questions.
  - 2. Attempt **one** question from each Unit.
  - 3. Begin each answer in a new page.
  - 4. Answer parts of a question at a place.
  - 5. Assume reasonable data wherever required.

### UNIT—1

 (a) What is entropy? State the properties of entropy. What is information rate? Consider a telegraph source having two symbols Dot (.) and Dash (-). The Dot duration is 0.2 sec; and Dash duration is 3 times of the Dot duration. The probability of the Dots occurring is twice that of Dash and time between symbols is 0.2 seconds. Calculate information rate of the telegraph. 1+1+1+5=8

- (b) What is mutual information? Prove that I(X; Y) = I(Y; X) = 1+3=4
- (c) Two BSCs are connected in cascade as shown in figure below :



- *(i)* Find channel matrix of resultant channel.
- (ii) Find  $P(Z_1)$  and  $P(Z_2)$ , if  $P(X_1) = 0$  6 and  $P(X_2) = 0$  4.
- **2.** A channel matrix for the ternary channel is given below :

$$\begin{array}{cccc} 1 & 0 & 0 \\ 0 & p & 1 & p \\ 0 & 1 & p & p \end{array}$$

Assuming source probabilities as  $P(x_1)$  *P* and  $P(x_2)$   $P(x_3)$ , determine the source

J7/1047

(Continued)

3

entropy H(x) and the mutual information I(X; Y). Also determine the channel capacity of the channel. 11+4=15

#### Unit—2

- State and prove baseband and bandpass sampling theorems for reconstruction from samples. 7+8=15
- **4.** State and prove sampling theorem. What are the practical aspects of sampling? 10+5=15

#### Unit—3

- (a) What is delta modulation? Explain what is slope overload distortion. Derive an expression for a signal to quantized power for delta modulation. Assume that no slope overload distortion exists.
  2+3+6=11
  - (b) A DM system is tested with a 10 kHz sinusoidal signal with 1 V peak to peak at the input. It is sampled at 10 times the Nyquist rate.
    - *(i)* What is the step size required to prevent slope over head?
    - (ii) What is the corresponding SNR?

2+2=4

- 6. (a) State adaptive modulation. What are the advantages of adaptive modulation over delta modulation? 1+2=3
  - (b) Consider a sine wave of frequency  $f_m$ and adaptive modulation  $A_m$  applied to delta modulator of step size . Show that the slope overload distortion will occur if

$$A_m / 2 f_m T_s$$
 2

- (c) Write short notes on the following : 5+5=10
  - (i) DPCM
  - (ii) ADPCM for low-bit rate speech coding

#### UNIT-4

- With the help of neat diagram, illustrate BPSK transmitter and receiver.
   15
- 8. (a) Derive the expression for probability of error  $P_e$  of a coherent binary ASK. 10
  - (b) Write a short note on M-ary modulation techniques.5

J7**/1047** 

(Turn Over)

J7**/1047** 

(Continued)

- **9.** (a) For a linear block code, prove with examples that—
  - *(i)* the symbols depend on error pattern and not on transmitted codeword;
  - (ii) all error patterns that differ by a codeword have the same syndrome.
  - (b) The parity check matrix of a particular(7, 4) linear block code is given by

    - (i) Find the generator.
    - (ii) List all code vectors.
    - *(iii)* What is the minimum distance between code vectors?
    - (iv) How many errors can be detected and how many errors can be corrected?2+2+3+3=10
- 10. (a) Define cyclic code and its properties. Why does codeword represent to a polynomial? 2+1=3

# (6)

- (b) Explain generation of code vectors in systematic form and non-systematic form. 2+2=4
- (c) The generator of a (7, 4) cyclic code is  $G(p) \quad p^3 \quad p \quad 1.$

Find all the code vectors for the two different forms mentioned above. 4+4=8

\*\*\*