2016/ODD/03/10/EC-103 (C)/254

PG Odd Semester (CBCS) Exam., December-2016

ECONOMICS

(1st Semester)

Course No. : EC-103 (C)

(Mathematical Methods for Economic Analysis)

Full Marks : 75 Pass Marks : 30

Time : 3 hours

The figures in the margin indicate full marks for the questions

Answer five questions, selecting one from each Unit

Unit—I

- **1.** (a) Given
 - $A \quad \begin{array}{cccc} 7 & 1 \\ 6 & 9 \end{array}, B \quad \begin{array}{cccc} 0 & 4 \\ 3 & 2 \end{array} \text{ and } C \quad \begin{array}{cccc} 8 & 3 \\ 6 & 1 \end{array}$
 - Find (i) 3A and (ii) 4B+2C.
 - (b) Determine the rank P of the following matrix :

(Turn Over)

(2)

- (c) Given the following model :

 - *(i)* How many endogenous variables are there?
 - (*ii*) Find *Y* *, *T* * and *C* *. 4+4+7=15
- **2.** (*a*) What is the difference between a tangent line and a secant line? Illustrate with the help of a suitable diagram.
 - *(b)* Find all the first-order derivatives of the following functions :

(*i*)
$$y$$
 $(3x^2 \ 13)^3$
(*ii*) z $\frac{8x}{5x} \frac{7y}{2y}^2$

- (c) Find the values of the following integrals: (i) $(2x^2 + 4x^6) dx$
 - (ii) $7e^{-x} \frac{2}{x} dx$ 3+6+6=15

J7**/556**

(Continued)

Unit—II

3. (*a*) What is meant by inflection point of a function? Find the inflection point for the following function :

$$y (x 8)^4$$

(b) Find the relative maxima and minima of y by the second derivative test :

(*i*)
$$y \quad 2x^2 \quad 8x \quad 25$$

(*ii*) $y \quad \frac{1}{3}x^3 \quad 3x^2 \quad 5x \quad 3$

(c) A firm has the following total cost and demand functions :

$$\begin{array}{cccc} C & \frac{1}{3}Q^3 & 7Q^2 & 111Q & 50 \\ Q & 100 & P \end{array}$$

Find the maximum profit. 4+6+5=15

- **4.** (a) Given the demand function P_d 113 Q^2 and supply function P_s $(Q \ 1)^2$. Find producer's surplus.
 - (b) Given

$$\begin{array}{rrrr} I_t & 4 & 2 (Y_t & Y_{t-1}) \\ S_t & 0 & 2 Y_t \\ Y_o & 5600 \end{array}$$

Find the equilibrium level of income Y_t for any period. Also find the warranted rate of growth.

J7**/556**

(Turn Over)

(c) Given demand and supply for the Cobweb model as follows. Find the intertemporal equilibrium price and determine whether the equilibrium is stable:

Unit—III

- **5.** (a) What is the significance of second-order test in optimization? Illustrate with an example.
 - (b) Find the extreme values, if any, of the following four functions. Check whether they are maxima or minima by the determinantal test :

(i)
$$Z \quad X_1^2 \quad 3X_2^2 \quad 3X_1 X_2 \quad 4X_2 X_3 \quad 6X_3^2$$

(*ii*)
$$Z \quad X_1 X_3 \quad X_1^2 \quad X_2 \quad X_2 X_3 \quad X_2^2 \quad 3X_3^2$$

(c) A utility function is given by the equation

$$U \quad x \quad 2x^2 \quad xy \quad 40y \quad y^2$$

where x is the number of units of good x and y is the number of units of good y consumed. Calculate the maximum level of utility. 4+6+5=15

(Continued)

- **6.** (*a*) A firm produces two products which are sold in two separate markets with the demand schedules.
 - $\begin{array}{cccc} P_1 & 600 & 0 & 3q_1 \\ P_2 & 500 & 0 & 2q_2 \end{array}$

Production costs are related and the firm faces the total cost function

TC 16 1 $2q_1$ 1 $5q_2$ 0 $2q_1q_2$

If the firm wishes to maximize total profits, how much of each product should it sell? What will be the maximum level of profit?

- (b) A multiplant monopoly operates two plants whose total cost schedules are
 - $\begin{array}{cccccc} {\rm TC}_1 & 8 & 5 & 0 & 03q_1^2 \\ {\rm TC}_2 & 5 & 2 & 0 & 04q_2^2 \end{array}$

If it faces the demand schedule

P 60 0 04q

where q q_1 q_2 , how much should it produce in each plant in order to maximize profits? 8+7=15

(Turn Over)

Unit—IV

- **7.** (a) Write down the economic interpretation of Lagrange multiplier.
 - (b) If, in stead of g(x, y) C, the constraint is written in the form of G(x, y) 0, then how should the Lagrangian function and the first-order condition be modified as a consequence?
 - (c) (i) What output mix should a profit-maximizing firm produce when its total profit function is $80x \ 2x^2 \ xy \ 3y^2 \ 100y$ and its maximum output capacity is $x \ y \ 12$?
 - (ii) Estimate the effect on profits if output capacity is expanded by 1 unit. 5+4+6=15
- 8. (a) A small publishing company decides to use one section of its plant to produce two textbooks called A and B. The profit made on each copy is ₹12 for A and ₹ 18 for B. Each copy of book A requires 12 minutes for printing and 18 minutes for binding. The corresponding figures for book B are 15 and 9 minutes respectively. There are 10 hours available for printing and 10.5 hours are available for binding. How many of each should be produced to maximize profit?

(Continued)

(7)

(b) Solve the linear programming problem by simplex method :

Maximize Z = 4x = 9y

subject to

$$5x 3y 30 7x 2y 28 x 0, y 0 8+7=15$$

UNIT-V

- **9.** (a) Distinguish between zero-sum game and non-zero-sum game.
 - *(b)* Determine the optimal strategies for the two players *A* and *B* and find the value of the game from the following payoff matrix :

		Play	jer A		
Player B	3	-1	4	2	
	-1	-3	-7	0	
	4	-6	2	-9	

(c) Given the payoff matrix

		Firm–B	
		Low Price	High Price
Firm–A	Low Price	1, 1	3, -1
	High Price	-1, 3	4, 2

where the payoffs are the profits or losses of the tow forms.

(Turn Over)

(8)

- (i) Do both the firms have a dominant strategy?
- (ii) What is the optimal strategy for each firm? Also find the Nash equilibrium, if there is one.

4+5+6=15

10. (*a*) What is meant by sequential game? Given the following payoff matrix :

		Strategies	s of firm 2
		S_1	S_2
Strategies of	S_1	$\{2, 2\}$	{3,6}
Firm 1	S_2	{6,3}	{ 2, 2 }

- *(i)* Represent the above game through its extensive form.
- (ii) Do you think it is the first mover that gains more from the game? Justify your answer.
- (b) Consider the tit-for-tat strategy in the repeated prisoner's dilemma. Suppose that one player makes a mistake and defects when he meant to cooperate. If both players continue to play tit-for-tat after that, what happens?
- (c) Explain how the law that banned cigarette advertising on televison in India solved the prisonen's dilemma for cigarette producers. (2+2+2)+5+4=15

J7—50**/556** 2016/ODD/03/10/EC-103 (C)/254