2016/ODD/03/10/ECO-305/249

PG Odd Semester (CBCS) Exam., December-2016

ECONOMICS

(3rd Semester)

Course No. : ECOCC-305

(Mathematical Economics-I)

 $\frac{Full Marks: 70}{Pass Marks: 28}$

Time : 3 hours

The figures in the margin indicate full marks for the questions

Answer five questions, selecting one from each Unit

Unit—I

1. (a) A consumer has the following utility function derived over x_1 and x_2 :

 $U(x_1, x_2)$ $a_1 \log x_1$ $a_2 \log x_2; a_1$ a_2 1

If p_x and p_y are the fixed prices of two goods *x* and *y* and the individual's fixed income is *M*, find his demand schedules from x_1 and x_2 .

(2)

- (b) Show that diminishing marginal utility is neither necessary nor sufficient for diminishing marginal rate of substitution.
- (c) Present Slutsky equation in terms of elasticities. 7+5+2=14
- **2.** (a) An individual lives in a two-commodity world. How will his purchases change if prices and money income are doubled?
 - (b) Establish the relationship between the Lagrangean multipliers of the utility maximization problem and its dual problem.
 - (c) Assume a demand function
 - q 25 5p

What is the highest price anybody will pay for the commodity? 6+6+2=14

Unit—II

3. (a) Given the production function $q x_1^{1/2} x_2^{1/2}$ and prices per unit of x_1 and x_2 are ₹ 2 and ₹ 4 respectively and total cost of ₹ 80. Determine the maximum output subject to the cost constraint.

J7**/761**

J7**/761**

(Continued)

(b) If the production function is of the form

$$q = 8x_1^{1/2} = 20x_2^{1/2}$$

and if r_1 1, r_2 5, derive the equation of the expansion path.

- (c) State and prove the 'adding-up' theorem. 6+5+3=14
- **4.** (a) Given the production function

 $Q \quad K^{1/2}L^{1/2}$ and $P_K \notin 4, P_L \notin 8$

Derive equation of the total cost function.

(b) Show that if the production function is given by the equation

 $q Ax_1^2 x_2^2 Bx_1^3 x_2^3$

the expansion path is given by

 $r_1 x_1 \quad r_2 x_2 \quad 0$

where r_1 and r_2 are the unit prices of x_1 and x_2 respectively.

(c) Verify Euler's theorem of homogeneous function. 6+5+3=14 UNIT—III

5. (a) A profit maximizing monopolist has the following demand and total cost functions :

Demand function, $p = \frac{3}{q}$ Cost function, $c = 2q = 3q^2$

Is it possible for this monopolist to produce positive amounts for which his profit would be maximum? Give reasons for your answer.

- (b) Decompose economic efficiency as the sum of the technical and allocative efficiencies using Farrell's input-based measure. 8+6=14
- **6.** (a) Given the following demand and cost functions :

p 250 3q and c 3q 5 q^2

Find the profit maximizing price and output. How would the firm adjust its price and output, if a tax of $\overline{}$ 4 per unit of output be imposed on the firm?

 (b) Illustrate Farrell's output-based measure of technical efficiency and inefficiency using a well-behaved production function. 8+6=14

UNIT—IV

- **7.** (a) Distinguish between Marshallian and Walrasian static stability conditions of equilibrium. Examine the stability of equilibrium when both demand and supply curves have slopes of same sign.
 - *(b)* You are given the market demand and supply functions as

$Q^{D}(t)$	P(t), with (,)	0
$Q^{s}(t)$	<i>P</i> (<i>t</i>), with (,)	0

Further a dynamic price adjustment mechanism is given as

$$\dot{P}$$
 [$Q^D(t)$ $Q^S(t)$]

0 is a constant. Find the time path of price. What restrictions should you impose on the parameters for dynamic stability? (5+2)+(4+3)=14

8. (a) Formally derive the impacts of specific sales tax and ad valorem tax on competitive equilibrium. Suppose a competitive industry consist of 100 identical firms each having a cost function of the form

$$C_i \quad 0 \ 1q_i^2 \quad q_i \quad 10$$

If a per unit sales tax of $\overline{\bullet} t$ is imposed, derive the market supply function.

- (b) A monopolist having the following inverse demand and cost functions is able to separate her consumers into two distinctly separate markets :
 - $P_1 = 80 = 5Q_1$
 - P_2 180 20 Q_2
 - C 50 20(Q_1 Q_2)

Calculate profit maximizing prices and quantities. (4+6)+4=14

Unit—V

9. (a) Derive the slopes of the aggregate demand and aggregate supply functions under a complete Keynesian system. What change do you observe in if you insert a classical money demand function into the system?

J7**/761**

(Continued)

(7)

- (b) Establish the result that money is neutral in the Lucas-Phelps model under the assumption of perfect information for buyers and sellers.
 (4+3)+7=14
- **10.** Write short notes on any *two* of the following : 7×2=14
 - (a) Kaldor-Kalecki model of business cycle
 - *(b)* Dynamic multipliers in macroeconomic system
 - (c) The new Phillips curve

 $\star\star\star$