2016/ODD/08/22/CHM-101/342

PG Odd Semester (CBCS) Exam., December-2016

CHEMISTRY

(1st Semester)

Course No. : CHMCC-101

(Inorganic Chemistry-I)

 $\frac{Full Marks: 70}{Pass Marks: 28}$

Time : 3 hours

The figures in the margin indicate full marks for the questions

Answer five questions, taking one from each Unit

Unit—I

- (a) Furnish point group symmetry labels for the following species. Explain, giving suitable illustrations : 2×3=6
 - (*i*) $[Co(en)_3]$ (en = ethylenediamine)
 - *(ii)* POBrCl₂
 - *(iii)* BrF₅

J7**/833**

J7**/833**

molecule.

(2)

- (b) Sketch BF₃ with the fluorines labelled as F_1 , F_2 and F_3 and show (figuratively) : 4 $S_3^4 C_3^1$
- (c) Answer the following giving a rationale : $2 \times 2=4$
 - (i) Is the skew form of H_2O_2 is chiral?
 - (*ii*) Ferrocene has pentagonal antiprism geometry. Is it polar?
- **2.** (a) Show how symmetry elements are lost in going from BF_3 to $BClF_2$ and BClBrF. 6
 - (b) Give examples of the molecules that possess : 4
 (i) Only i
 (ii) C₃ and h
 (iii) Only
 (iv) D₃ point group

 (c) Taking appropriate matrix representations, show that C₂ v v for H₂O

4

Unit—II

- **3.** (a) Predict the shapes of the following species and describe the type of hybrid orbitals on the central atom : $1\frac{1}{2}\times4=6$
 - *(i)* SbF₆
 - (ii) NO_2
 - (iii) XeOCl₂
 - (iv) ICl_4
 - (b) Based on LCAO-MO approximation discuss the metallic band in lithium.
 Draw the density of states (DOS) profile of the metallic band.
 - (c) Construct the MO energy level diagram of BeF₂(g) using Walsh diagram. Predict the shape and explain.
- (a) Construct the MO energy level diagram of NH₃ molecule and discuss on which atom bonding and anti-bonding orbitals are concentrated. 3+1=4
 - (b) What is absolute hardness? Illustrate the trend for halogens $(X_2, X ext{ F, Cl, Br and I}).$ 1+3=4
- J7**/833**

(Turn Over)

4

- (c) Write brief notes on the following : 3+2=5
 - (i) Jahn-Teller distortion
 - (ii) Bent's rule
- (d) Show a band diagram for 'n-type' semiconductor and explain. 1

Unit—III

- **5.** (a) Using Wade's electron counting rules, calculate the number of skeletal electrons of $B_5C_2H_7$ and nomenclate the geometry of the cluster.
 - (b) Draw the Lipscomb topological diagram of B_6H_{10} , using Styx rule and calculate the number of orbitals and electrons available for boron framework. 2+2=4
 - (c) B_6H_{10} can act as an acid as well as base. Explain by taking suitable examples. 2
 - (d) Give the synthetic scheme of 1,2dicarba-*closo*-dodecaborane and draw its structure.
 - (e) Metallocarboranes can be prepared using polyhedral expansion reaction.Explain by taking a suitable example. 3
 - (f) What are amphiboles? Give one example. 1

J7**/833**

(Continued)

2

2

6. (a) Write down the preparation process of phosphazenes. Draw two different conformations of $(NPCl_2)_4$. What will happen when $(NPCl_2)_3$ reacts with CH₃MgI?

Draw the structure of S_4N_4 and discuss (b) its properties.

- What are non-stoichiometric oxides? (c)Give а brief overview of their applications.
- (d) Complete the following reactions : 3

(*i*)
$$HPO_4^2$$
 MoO_4^2 ^H, 25 °C ?
(*ii*) WO_4^2 ^H (pH 6 0) ?
 Co^2 , 100 °C ?
(*iii*) $[P_2W_{18}O_{62}]^6$ $\frac{HCO_3}{25 °C}$?

~

UNIT-IV

7. (a) How does ozone (O_3) form in the atmosphere? Discuss various pathways leading to ozone depletion and hole formation in the ozone layer. Show the ozone cycle.

1+3+1=5

3

3

5

J7**/833**

(Turn Over)

(6)

- What is Minamata disease? Explain the (b)biochemical effect of mercury (Hg), when consumes at high level. Name two antidotes for detoxification of mercury. 2+3+2=7
- 2 (c)Write a short note on cryptands.
- Write a brief account on domestic and **8.** (a) industrial wastewater treatment. 4
 - What is meant by ionophores? Discuss (b)the structures of 'nonactin' and 'valinomycin' ionophores and comment on their transport properties. 2+4+1=7
 - Demonstrate the active transport with (c)the help of Na -K pump through cell membrane. 3

UNIT-V

9. (a) Account for the volume of activation for water exchange in the following reactions : 2×3=6 (*i*) $[Co(NH_3)_5(H_2O)]^3$ C1 $[Co(NH_3)_5Cl]^2$ H₂O $V = 1.4 = 0.8 \text{ cm}^3 \text{ mol}^{-1}$

J7/833

(Continued)

(*ii*)
$$[Rh(NH_3)_5(H_2O)]^3$$
 Cl
 $[Rh(NH_3)_5C1]^2$ H₂O
V 3 0 0 7 cm³ mol⁻¹
(*iii*) $[Cr(NH_3)_5(H_2O)]^3$ NCS
 $[Cr(NH_3)_5NCS]^2$ H₂O
V 4 9 0 6 cm³ mol⁻¹

- (b) What are different classes of electron transfer reactions? In the light of electron transfer mechanism, explain that the reduction of $[Co(NH_3)_5C1]^2$ is about 10^{10} times faster than $[Co(NH_3)_6]^3$.
- (c) Account for the difference in rate constants for the following reactions : 3

(*i*)
$$[Fe(H_2O)_6]^2$$
 Cl
 $[Fe(H_2O)_5Cl] H_2O$
 $K \ 10^6 M^{-1}s^{-1}$
(*ii*) $[Ru(H_2O)_6]^2$ Cl
 $[Ru(H_2O)_5Cl] H_2O$
 $K \ 10^{-2} M^{-1}s^{-1}$

10. (a) Write a rate law for a dissociative reaction

$$ML_{5}X \xleftarrow{k_{1}}{} ML_{5} + X$$
$$ML_{5} + Y \xleftarrow{k_{2}}{} ML_{5}Y \qquad 4$$

- (b) Show Ray-Dutt twist pathways racemization of trischilate complex. 4
- (c) Explain, how oxygen-17 NMR can be used for determination of rate constant of water exchange reaction.
- (d) Write a short note on anation reaction. 2
 - $\star \star \star$

5