2016/ODD/08/22/CH-303 (C)/354

PG Odd Semester (CBCS) Exam., December-2016

CHEMISTRY

(3rd Semester)

Course No. : CH-303 (C)

(Physical Chemistry-III)

Full Marks : 75 Pass Marks : 30

Time : 3 hours

The figures in the margin indicate full marks for the questions

Answer five questions, selecting one from each Unit

Unit—I

- **1.** (*a*) What are ensembles? How are they classified? Using micro-canonical approach, how can the concept of temperature be introduced? 1+2+5=8
 - (b) State the fundamental postulates of ensemble averaging.
 - (c) The molar entropy of He at a given temperature and pressure is 30.1 eV.
 What is the molar entropy of Ne (at. wt = 20.2 a.u.) at the same temperature and pressure?

(2)

- 2. (a) What is phase space? Derive translational partition function of a particle in a 3D box by using classical energy. 2+5=7
 - (b) If entropy S k $p_i \ln p_i$, obtain relation for E and A in terms of partition function (Q), using microcanonical ensembles distribution law. 2+2=4
 - (c) "Rotational characteristic temperature can be used to determine the bond length of a diatomic molecule." Explain.

Unit—II

- **3.** (a) By considering a one-dimensional quantum mechanical simple harmonic oscillator, find out the expression for partition function and show that this expression in the high temperature limit, give the same expression as obtained for a classical oscillator.
 - (b) Find out an expression for heat capacity of an Einstein crystal. What does this expression yield at high temperature?
 - (c) Explain electronic partition function (q^E) is usually just equal to degeneracy of the electronic ground state.
 3

4

3

J7**/580**

6

4. (a) Derive an expression for $k_P(T)$ for the homogenous gas phase chemically reaction

$$v_A A \quad v_B B \rightleftharpoons v_C C \quad v_D D$$

in terms of molar partition functions of species *A*, *B*, *C* and *D*.

(b) Determine the equilibrium constant of association of alkali metal vapour $2Na \rightleftharpoons Na_2$ at 1000 K. Given that the dissociation energy, vibrational temperature and rotational temperature are 17.3 kcal mol⁻¹, 229 K and 0.221 K respectively. The next electronic state lies approximately 16000 cm⁻¹ above the ground state.

Unit—III

- **5.** (*a*) Considering the equilibrium between a system and particle-energy reservoir, deduce an expression for partition function and henceforth, arrive at an expression of B-E statistics.
 - (b) What are the characteristics of the quantum particles (i) bosons and (ii) fermions?
 - (c) What are the conditions under which B-E and F-D statistics approach Boltzmann statistics?

- **6.** (a) Considering closed isothermal system, deduce an expression for Maxwell-Boltzmann distribution law. 10
 - (b) Assuming the form of probability distribution function of a given canonical ensemble, how can we arrive to the B-E distribution function?

UNIT—IV

- **7.** (*a*) How is the particle scattering factor related to the size of polymer molecules? Explain how the molecular weight of a polymer solution can be determined from light scattering data.
 - (b) Explain free radical polymerization with an example. 7
- 8. (a) Describe with relevant expressions the sedimentation method of determining average molecular weight of macromolecules.
 7
 - (b) Explain with examples optical and geometrical isomerism in macromolecules. 4+4=8

9

6

9

2

4

(Continued)

8

Unit—V

9. (a) Explain bimolecular surface reaction based on Langmuir-Hinshelwood mechanism and elucidate how an inhibitor affect the rate in a bimolecular surface reaction.

8

7

- (b) Draw the potential energy diagram for a unimolecular surface reaction and discuss the observed activation energy for the reaction.
- 10. How many mechanisms are there to explain the bimolecular surface reactions? Discuss the kinetics of bimolecular surface reactions in the light of the following specific situations : 2+3+3+3+2+2=15
 - (a) Reaction between two adsorbed molecules
 - *(b)* Reaction between a gas molecule and an adsorbed molecule
 - (c) Adsorption of two gases without mutual displacement
 - (d) Inhibition
 - (e) Activation energies