2016/ODD/08/22/CH-301 (C)/352

PG Odd Semester (CBCS) Exam., December-2016

CHEMISTRY

(3rd Semester)

Course No. : CH-301 (C)

(Inorganic Chemistry-III)

 $\frac{Full Marks: 75}{Pass Marks: 30}$

Time : 3 hours

The figures in the margin indicate full marks for the questions

Answer five questions, taking one from each Unit

Unit—I

- (a) What is meant by organometallic compounds? Write down the different strategies to obtain kinetically stable organometallic compounds. 1+5=6
 - (b) Illustrate the MO diagram showing *d*-orbital overlap between metal atoms of $[Os_2Cl_8]^2$. Predict the bond order and draw the most stable structure.

3+1+1=5

(2)

- (c) Write down the products of the following (give structures) : $1 \times 4=4$ (i) WCl₆ LiMe ? (ii) [CpIrCl₂]₂ $\stackrel{AlMe_3}{[O]}$? (iii) Ni (PPh₃)₃ C₂H₅I ? (iv) K [Mn (CO)₅] PhCH₂I ?
- (a) Determine the total valence electrons (TVE) of the following compounds and comment on their isolobal relationship :
 1×4=4
 - (*i*) $[(^{5}-C_{5}H_{5})Fe(CO)_{2}]$
 - *(ü)* [CoH(⁸-C₈H₈)]
 - (*iii*) [Mn (CO)₆]
 - (iv) $[Pt(Ph)(CO)Cl_2]$
 - (b) Taking suitable example show how the change in ligands and metals influence the steric saturation in organometallic compounds.

3

 (c) Give a schematic route to obtain Schrock-alkylidene compound from Fischer-carbene compound. How does Fischer-type compounds differ from Schrock-type compounds? Discuss the bonding in Schrock-type organometallic compounds. 2+2+2=6

J7**/578**

(Turn Over)

J7**/578**

(Continued)

(d) Give products of the following reactions : 1×2=2

(*i*)
$$Cp_2Zr(Ph)_2 \xrightarrow{h} [A]$$

 $\xrightarrow{Ph-C \equiv C-Ph} [B]$
(*ii*) $(CO)_5W = C \xrightarrow{OMe}_{R} + BBr_3 \longrightarrow [C]$

Unit—II

- **3.** (a) What is meant by 'coordinative unsaturation'? How is it related to catalytic properties of inorganic complexes? Furnish two examples. 1+2+2=5
 - (b) Suggest a plausible mechanism for the oxidative addition of H₂ to metal complexes.
 4
 - (c) Write the products and comment on the following reactions : 2×3=6

(*i*)
$$[Rh(CO)_2Cl_2] + CH_3I \longrightarrow [D]$$

(*ii*) $Fe(CO)_5 + OH^- \longrightarrow [E] \xrightarrow{OH^-} [F] + [G]$
(*iii*) $\bigvee_{\text{H}} \xrightarrow{H^+} [H] \xrightarrow{BH_4^-} [H] \xrightarrow{BH_4^-} [I]$
 $Fe(CO)_3$

J7**/578**

(Turn Over)

- 4. (a) Furnish the products of the following reactions and predict the probable structure : 1¹/₂×2=3
 (i) IrCl(CO)(PR₃) H₂S ?
 - (ii) CH₃Rh(PPh₃)₂ ?
 - (b) The rate of reaction of O_2 with trans-IrX(CO)(PPh₃)₂ in benzene decreases in the order X I Br Cl N₃ F. Explain the observation. 4
 - (c) Briefly discuss Ziegler-Natta catalysis for polymerization of alkene.5
 - (d) Write a note on insertion reaction. 3

Unit—III

- **5.** (a) Deduce the symmetry point group notation for a planar cis- and trans-PtCl₂X₂. 5
 - (b) Work out the point group symmetry of the following : 6

 PF_3Cl_2 , $MnBr(CO)_5$, $S_2O_3^2$

(c) Develop the matrix for an inversion (i) operation performed on a vector having coordinates (x_1, y_1, z_1) . 4

(Continued)

6. (a) Furnish the symmetry point groups of the following (explain with suitable illustrations) :

 S_8 , $CuCl_4^2$

- (b) What is meant by character of a symmetry element? Define dimension of representation. What is the dimension of C_2 in a $C_{2\nu}$ point group?
- (c) Show using figurative illustration for $C_{3\nu}$ point group :

$$_{v} C_{3}^{1} \quad _{v} \quad C_{3}^{2}$$

(d) Show that

 $_{i}^{2}(R)$ h

k.

where symbols have their usual significance in relation GOT. 4

UNIT—IV

- 7. (a) Discuss the principle of ionization chamber for radiation measurements. Why is signal amplification needed in this technique? 3+2=5
 - (b) Discuss the energetics of nuclear fission.

J7**/578**

(Turn Over)

5

5

3

3

- Explain the concept and utility of (c)nuclear reaction cross section. 5 Explain the photochemical process in **8.** (a) an inorganic scintillator. 5 Discuss briefly the principle of Ge(Li) (b)detector. Write down its advantages and disadvantages over NaI(Tl) detector. 4+3=7 Write a short note on any one of the (c)following : 3 (i) GM counter (ii) Nuclear fusion UNIT-V Define molecular recognition. Write **9.** (a) down the factors for high recognition. How can a spherical macrocyclic cryptand be useful for spherical, tetrahedral and anion recognition? Explain by taking suitable examples. 1+3+4=8ATP hydrolysis can be catalyzed by the (b)protonated macrocyclic polyamines. Briefly discuss. 3 Discuss light driven (2e (C) 2H) symport
 - across a membrane via the guinone carrier molecule, vitamin K_3 .

J7/578

(Continued)

(7)

- 10. (a) Dithienylethene system bearing two phenol groups shows the dual-mode of optical-electrical switching process. Explain.
 - (b) Show schematically the processes involved in supramolecular photochemistry. Explain A-ET-E process by taking a suitable example. 2+2=4

5

(c) Hydrogen bonds have been used to drive the formation of rotaxanes and catenanes. Briefly discuss.

 $\star \star \star$