2016/ODD/08/22/CHM-301/346

PG Odd Semester (CBCS) Exam., December-2016

CHEMISTRY

(3rd Semester)

Course No. : CHMCC-301

(Inorganic Chemistry—III)

Full Marks: 70Pass Marks: 28

Time : 3 hours

The figures in the margin indicate full marks for the questions

Answer five questions, selecting one from each Unit

Unit—I

- **1.** (a) What is meant by organometallic compound? Write down different strategies to obtain kinetically stable organometallic compounds. 1+4=5
 - (b) Write down the products for the following (give structures) : 1×4=4
 - (i) $WCl_6 + LiMe \longrightarrow ?$

(*ii*)
$$[CpIrCl_2]_2 \xrightarrow{AlMe_3} ?$$

J7**/837**

(Turn Over)

(2)

(iii) Ni(PPh₃)₃ + C₂H₅I \longrightarrow ?

(*iv*) $K[Mn(CO)_5] + PhCH_2I \longrightarrow ?$

- (c) Illustrate the MO diagram showing d orbital overlap between metal atoms of $[Os_2Cl_8]^2$. Predict the bond order and draw the most stable structure. 3+1+1=5
- (a) Determine the total valence electrons (TVEs) of the following compounds and comment on their isolobal relationship : 1×4=4
 - (*i*) $[(^{5} C_{5}H_{5})Fe(CO)_{2}]$
 - (*ii*) [CoH(⁸ C₈H₈)]
 - (iii) $[Pt(Ph)(CO)Cl_2]$
 - (*iv*) $[Mn(CO)_6]$
 - (b) Taking suitable example, show how the change in ligands and metals influence the steric saturation in organometallic compounds.3
 - (c) Give products of the following reactions : 1×2=2

(*i*)
$$\operatorname{Cp}_2\operatorname{Zr}(\operatorname{Ph})_2 \xrightarrow{h} [A] \xrightarrow{\operatorname{Ph}-C \equiv C - \operatorname{Ph}} [B]$$

(*ii*) $(\operatorname{CO})_5 \operatorname{W}=C \xrightarrow{\operatorname{OMe}}_{R} + \operatorname{BBr}_3 \longrightarrow [C]$

J7**/837**

(Continued)

(d) Give a schematic route to obtain Schrock-alkylidene compound from Fischer-carbene compound. How does Fischer-type compounds differ from Schrock-type compounds? Discuss the bonding in Schrock-type organometallic compounds. $1\frac{1}{2}+2+1\frac{1}{2}=5$

Unit—II

- **3.** (a) What is meant by 'coordinative unsaturation'? How is it related to catalytic properties of inorganic complexes? Furnish two examples. 1+2+2=5
 - (b) Write the products and comment on the following reactions : 2×3=6

$$(i) \quad \text{Fe}(\text{CO})_5 + \text{OH}^- \longrightarrow A \xrightarrow{\text{OH}^-} B + C$$

(*ii*)
$$[Rh(CO)_2Cl_2] + CH_3I \longrightarrow A$$

(iii)
$$H^+ \xrightarrow{H^+} A \xrightarrow{BH_4^-} B$$

Fe(CO)₃ $H^+ \xrightarrow{H^+} A \xrightarrow{BH_4^-} B$

(c) Suggest a plausible mechanism for the oxidative addition of H_2 to metal complexes.

J7**/837**

(Turn Over)

3

(4)

- 4. (a) The rate of reaction of O₂ with trans-IrX(CO)(PPh₃)₂ in benzene decreases in the order X I Br Cl N₃ F. Explain the observation.
 - (b) Furnish the products of the following reactions and predict the probable structure : $1\frac{1}{2}\times2=3$ (i) IrCl(CO)(PR₃) H₂S ?
 - (ii) CH₃Rh(PPh₃)₂ ?
 - (c) Briefly discuss Ziegler-Natta catalysis for polymerization of alkene.4
 - (d) Write a note on insertion reaction. 3

Unit—III

- **5.** (a) Deduce the symmetry point group notation for a planar *cis* and *trans*- $PtCl_2X_2$.
 - (b) Develop the matrix for an inversion (i) operation performed on a vector having coordinates (x_1, y_1, z_1) .
 - (c) Work out the point group symmetry of the following :

$$PF_3Cl_2$$
, $MnBr(CO)_5$, $S_2O_3^2$

(Continued)

6. (*a*) Furnish the symmetry point groups of the following (explain with suitable illustrations) :

 S_8 , $CuCl_4^2$

- (b) What is meant by character of a symmetry element? Define dimension of representation. What is the dimension of C_2 in a $C_{2\nu}$ point group?
- (c) Show using figurative illustration for $C_{3\nu}$ point group

$$_{\nu}C_{3}^{1} \ _{\nu} \ C_{3}^{2}$$
 3

4

3

(d) Show that

$$k^{2}_{i}(R) \quad h$$

where symbols have their usual significance in relation GOT. 4

UNIT—IV

- 7. (a) Discuss the principle of ionization chamber for radiation measurements. Why is signal amplification needed in this technique?
 3+2=5
 - (b) Discuss the energetics of nuclear fission. 5

- (c) Explain the concept and utility of nuclear reaction cross section.
- **8.** *(a)* Explain the photochemical process in an inorganic scintillator. 4
 - (b) Discuss briefly the principle of Ge (Li) detector. Write down its advantages and disadvantages over NaI (Tl) detector. 4+3=7
 - (c) Write a short note on any one of the following: 3
 - (i) GM counter
 - (ii) Nuclear fusion

Unit—V

9. (a) What is meant by molecular recognition? Write down the factors for high recognition. How can a spherical macrocyclic cryptand be useful for spherical, tetrahedral and anion recognition? Explain by taking suitable examples.

1+2+4=7

(b) ATP hydrolysis can be catalyzed by the protonated macrocyclic polyamines. Briefly discuss.3

J7**/837**

(7)

(c) Discuss light driven (2e 2H) symport
 across a membrane via quinone carrier
 molecule, vitamin K₃.

4

- 10. (a) Dithienylethene system bearing two phenol groups shows the dual mode of optical-electrical switching process. Explain.
 4
 - (b) Show schematically the processes involved in supramolecular photochemistry. Explain A-ET-E process by taking a suitable example. 2+2=4
 - (c) Hydrogen bonds have been used to drive the formation of rotaxanes and catenanes. Briefly discuss.

 $\star \star \star$