2016/ODD/08/22/CHM-104/345

PG Odd Semester (CBCS) Exam., December-2016

CHEMISTRY

(1st Semester)

Course No. : CHMCC-104

(Physical Chemistry—II)

Full Marks : 70 Pass Marks : 28

Time: 3 hours

The figures in the margin indicate full marks for the questions

Answer **five** questions, selecting **one** from each Unit

Unit—I

- (a) Clearly stating the assumptions and approximations involved, give a concise account of the Debye-Hückel theory of electrolytic solution.
 - *(b)* Define the electrochemical potential of an ion.
- 2. (a) Discuss the principle of determination of pH of a solution using calomel electrode.
 - (b) Discuss the Born model for the calculation of free energy for the 'ion-solvent' interaction mentioning the assumptions.
 10

2

(2)

Unit—II

- **3.** (a) How do you explain the term 'corrosion' in terms of oxidation and reduction? Illustrate the process of corrosion with an example and techniques available for protection.
 - (b) With a suitable diagram, explain the terms 'outer potential', 'inner potential' and 'volta potential'.
 - (c) The exchange current density of H , H_2/Pt is 0 79 mA cm². What current does flow through a standard electrode of total area 5 0 cm² when the overpotential is 5 0 mV?
- **4.** Define electric double layer. Give a brief schematic presentation of the Helmholtz-Perrin model and Gouy-Chapman model of electrode-solution interface and discuss their limitations.

2+5+5+2=14

7

3

4

6

Unit—III

- **5.** (a) Explain the formation of MgAl₂O₄ in terms of Kirkendall effect and Wagner reaction mechanisms.
 - (b) "Alkali metal halide when heated in the presence of alkyl metal vapour shows colour." Explain.

(3)

	(c)	By considering band theory, explain electronic structure of conducting solids and intrinsic semiconductor.	5	;
6.	(a)	Discuss the factors influencing the rate of solid-state reaction.	6	
	(b)	Discuss the types of solid solution by taking an example.	5	
	(c)	Explain the non-stoichiometric defects with examples.	3	
		UNIT—IV		
7.	(a)	What is Gibbs dividing plane? Obtain an expression relating pressure across a surface to the curvature of the surface. 1+5	=6	
	(b)	With the help of orbital energy level diagram, distinguish among three basic processes of photoelectron spectroscopy.	5	
	(c)	The surface tension of ethanol-water mixture follows the equation		1
		(10^{3} Nm^{1}) 72 0 0 5 (c / mol dm ³) 0 2 (c / mol dm ³) ²		
		where c is the molar concentration of ethanol and the temperature is 298 K. Calculate the surface excess of ethanol for a 0 5 mol dm 3 solution.	3	

(4)

8.	(a)	Derive an expression for multilayer adsorption isotherm. 6
	(b)	Explain how BET adsorption isotherm is used to estimate the surface area of a solid. 3
	(c)	Obtain an expression relating to surface excess concentration of solute with surface tension and discuss its consequences with surface active and surface inactive agents. 5
		UNIT—V
9.	(a)	Mention and explain five important factors which affect the cmc of a surfactant and micellar size in aqueous solutions. 5
	(b)	Explain the effect of temperature and pressure on critical micelle concentration and solubility. 4
	(c)	Write a short note on the kinetic of micelle formation.5
10.	(a)	Write a short note on the thermodynamic of micelle formation considering both (<i>i</i>) phase separation model and (<i>ii</i>) mass action model. 8
	(b)	Write short notes on : 2+2+2=6
		(i) Micellization
		<i>(ii)</i> Microemulsion
		(iii) Reverse micelle
	00.4	***
J7—	-80/3	836 2016/ODD/08/22/CHM-104/345

J7**/836**

(Turn Over)